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2 can be predicted for any extent of reaction. In Table II are listed 
the predicted and observed values for the configuration at 
phosphorus for the reaction of 2-[(/?)-160,170,180]phospho-
(S)-propane-l,2-diol that had proceeded some 23% to equilibrium. 
The product 1 and remaining 2 were isolated and purified by ion 
exchange chromatography followed (for 1) by HPLC (see Table 
II). Stereochemical analysis by the 31P NMR method we reported 
earlier9 showed that the product 1 is predominantly formed with 
retention (see Figure 110) and that the extent of racemization is, 
within experimental error, what is predicted from the rate con­
stants determined independently. 

The agreement between predicted and observed values (Table 
II) indicates that (i) the minimal kinetic scheme (Scheme I) is 
sufficient to describe the reaction course for the acid-catalyzed 
equilibration of 2 and 1 and (ii) the direct isomerization path 
proceeds with quantitative retention of configuration at phos­
phorus, as predicted by the pseudorotation mechanism. The 
possibility of a mechanism involving either free or caged meta-
phosphate species is unlikely. These results also provide the first 
evidence for the validity of the rules for pseudorotation3 in a simple 
phosphoric monoester. 
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We wish to describe the synthesis and some unusual chemistry 
of perfluorotetramethylcyclobutadiene oxide [perfluorotetra-
methyl(Dewar furan), 1], the first representative of its ring system. 

Scheme I 

Although Dewar thiophene 2, the sulfur analogue of 1, is 
prepared by photocyclization of the thiophene,1'2 this direct ap­
proach failed with the furan.3,4 Hence 2 was chosen as the starting 
material from which to fashion 1, but the disarmingly simple-
looking 2 - • 1 transformation required the circuitous pathway 
outlined in Scheme I. Since attempts to epoxidize 2 directly led 
to destruction of the ring system, its double bond was protected 
by formation of the known pyrrole adduct 3.5 Desulfurization 
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with triphenylphosphine yielded diene 4,6 mp 43-46 0C (70% from 
2). Again attempted epoxidation of the perfluoroalkyl-substituted 
double bond with alkaline hydrogen peroxide7 at room temperature 
resulted in thoroughgoing degradation. The problem was traced 
to the bridging nitrogen through the observation that the oxygen 
counterpart 82'8 was successfully oxidized to 9 under these con­
ditions. Accordingly, 4 was protected by nitrosation, giving 5, 
mp 108-109 0C (92%). Oxidation of 5 with hydrogen peroxide 
in methanolic potassium hydroxide yielded oxirane 6, mp 93-94 
0C (60%). Hydrogen bromide in benzene transformed 6 into 
aminooxirane 7, mp 53-84 0C9 (80%). When 7 was heated at 
85 0C and 15 torr in 1,2,4-trichlorobenzene containing a fivefold 
molar excess of 4-phenyl-l,2,4-triazoline-3,5-dione (to trap pyr­
role), cyclobutadiene oxide 1 distilled into a cold trap (~55%). 
This volatile, colorless liquid displayed IR Xn̂ 1 (vapor) 1695 cm"1 

(vc=c); 19F NMR10 (CDCl3) 5 64.35 and 66.80; mass spectrum, 
m/e 321 (M+ - F), 290 (M+ - CF2), 271 (M+ - CF3), 243 (M+ 

- COCF3), 69 (base, CF3). The instantaneous reaction of 1 with 
pyrrole and furan to yield 7 and 9, respectively, confirmed its 
structure. 

Cyclobutadiene sulfide 2 undergoes a degenerate rearrangement 
which becomes detectable on the NMR time scale above 100 0C,11 
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but it suffers irreversible change—quantitative 
aromatization12—only only under rather vigorous conditions (^2 
= 5 h at 160 0C2,13). In contrast, cyclobutadiene oxide 1 valence 
isomerizes cleanly by a different pathway at temperatures below 
100 0C (f1/2 =* 20 min at 95 0C), yielding the extremely stable 
cyclopropenyl ketone ll.3'14 We interpret this unexpected re-
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' m CF 
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arrangement of 1 in terms of fragmentation to carbene 10 followed 
by the amply precedented cyclization of a vinylcarbene to a cy-
clopropene.15,16 For the parent heterocycle, cyclobutadiene oxide 
itself, one can estimate from strain and bond energies that for­
mation of the carbene should be close to thermoneutral. Facile 
thermal access to a carbene from a ground state may be attributed 
here to relief of approximately 70-kcal/mol strain in two small 
rings17 and the generation of a C-O T bond.18 MNDO calcu­
lations21 yield an energy difference of 17 kcal/mol between fully 
optimized cyclobutadiene oxide and the (singlet) carbene, s-
cw-(Z)-2-buten-4-yliden-l-al. The dichotomous behavior of 1 and 
2 on thermolysis is understandable on the basis that (1) the 
difference between single and double bond energies is more than 
20 kcal/mol greater for C-O than for C-S22 and (2) thiophene 
enjoys significantly greater aromatic stabilization than furan.23 

The retro-Diels-Alder reaction of 9, carried out in a flow 
apparatus, required temperatures approaching 200 0C, and thus 
gave ketone 11 unaccompanied by the presumed intermediate 1. 
It was this discovery which stimulated us to synthesize 7, whose 
fragmentation was expected to proceed under milder conditions 
by virtue of the greater stabilization energy of pyrrole as compared 
to furan.23 
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Kobayashi has shown that Dewar thiophene 2 is a talented 
dienophile which undergoes Diels-Alder addition to many un­
hindered dienes at ambient temperatures.5 Competition exper­
iments now reveal that its oxygen counterpart 1 reacts with furan 
at 25 0C three orders of magnitude faster than 2. We ascribe 
the high reactivity of both dienophiles to low-lying LUMO's, which 
confer upon them cyclobutadienoid character.24 Perhaps the more 
reactive 1 has the lower lying LUMO, as predicted by simple 
molecular orbital theory. The cycloaddition chemistry of 1 will 
be discussed more fully in a future report. 

We plan to synthesize and study cyclobutadiene oxide itself. 
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Interest in gas-phase organometallic and inorganic complexes 
is at a high level1 due to successful studies of intrinsic chemistry 
of organic ions2 and the availability of laser desorption techniques 
for metal ion production.3 The affinities of molecules for metal 
ions and the structures of the products of this interaction are key 
aspects of organometallic chemistry to which the technique of mass 
spectrometry/mass spectrometry (MS/MS)4 should contribute. 
We now show that MS/MS can be used to order metal ion af­
finities for various ligands through the following sequence: (i) 
the metal ion is generated by laser desorption from the metal in 
the presence of the vaporized ligand(s); (ii) among the resulting 
products is the metal-bound dimer ion (L1-M-L2)"

1" (L = ligand, 
M = metal) which is mass selected; (iii) its structure is established 
by recording a collision-induced dissociation spectrum of fragment 
ions; (iv) finally, relative affinities of L1 and L2 for M+ are assigned 
from the fragment intensity ratio [L1M

+]Z[L2M
+]. We conclude 

inter alia that silver ion affinities depend upon the nature of the 
heteroatom in the ligand (ammonia solvates Ag+ more strongly 
than does water) and upon polarizability and inductive effects 
which favor larger and more branched solvent molecules. 

Consider the following data as an illustration of the basis for 
the method. An aluminum foil irradiated in the presence of 
diethylamine and isopropylamine by 1.06-nm radiation from a 
Nd:YAG laser in a combined chemical ionization/laser desorption 
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